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ABSTRACT 
In order to extract as much energy as possible from 

ambient vibrations, many vibration-based energy harvesters 

(VEHs) are designed to resonate at a specific base excitation 

frequency.  Unfortunately, many vibration energy sources are 

low frequency (0.5 Hz-100 Hz), intermittent, and broadband.  

Thus, resonant VEHs would not be excited continuously and 

would require a large mass or size to tune to such a low 

frequency. This work presents the modeling, analysis, and 

experimental application of a nonlinear, magnetically excited 

energy harvester that exhibits efficient broadband, frequency-

independent performance.  This design utilizes a passive 

auxiliary structure that remains stationary relative to the base 

motion of the VEH.  This device is especially effective for 

driving frequencies well below its fundamental frequency, thus 

enabling a more compact design compared to traditional 

resonant topologies.  A mechanical model based on Euler-

Bernoulli beam theory is coupled to a linear circuit and a model 

of the nonlinear, magnetic interaction to produce a distributed 

parameter magneto-electromechanical system.  The results of 

both harmonic and broadband, stochastic simulations 

demonstrate multiple-order-of-magnitude power harvesting 

performance improvement at low driving frequencies and an 

insensitivity to time-varying base excitation frequency content.  

Furthermore, the proposed system is shown to enable more 

practical designs than a resonant energy harvester for the 

specific example of harvesting energy from walking motion. 

INTRODUCTION 
In the last decade, vibration-based energy harvesting has 

received significant attention due to the ubiquity of untapped 

vibrational energy available in or around most manmade 

systems [1].  In order to maximize harvested power, vibration-

based generators are designed to match one of their natural 

frequencies – typically the fundamental frequency – to the base 

excitation frequency.  Additionally, it has been shown that 

minimizing the mechanical damping in the system enhances the 

power harvesting performance [2–4].  Unfortunately, lightly 

damped systems, while exhibiting the greatest peak power, also 

have the least bandwidth.  In many applications for which 

energy harvesting could be utilized, vibrations are intermittent, 

time-varying, and stochastic, rendering standard energy 

harvester designs ineffective. Indeed, Halvorsen [5] has shown 

large qualitative differences in the behavior of vibration-based 

energy harvesters under stochastic excitation. Hence, a means 

of making these devices less constrained to a single operating 

regime is desirable. 

If a single magnet is placed in the vicinity of the 

magnetized tip mass of the beam, a “hardening spring” effect 

can occur.  This effect can increase the mechanical response of 

the beam over a wider range of excitation frequencies; however, 

this setup suffers from hysteresis and can perform worse than 

the baseline system if it is operating in the non-resonant branch 

of the response [6].  Lin et al. [7] place a magnet in the 

vicinity of the tip and note an increase in voltage generated in a 

wider bandwidth around the resonant peak compared to the 

baseline system.  This phenomenon is magnified when the 

nearby magnet is attached to the end of another cantilevered 

beam; however, no energy is harvested from the secondary 

beam in that study, thereby reducing the power density of the 

device.  Nonlinear stiffness can also be created structurally, as 

in [8], in which the tip mass of the beam is attached to a pre-

buckled plate.  This auxiliary structure produces greater 

damping at high base excitation amplitudes, which may be 

considered a safety feature to prevent excessive strain in the 

device. 

In this paper, a design consisting of a permanent magnet 

attached to the tip of a cantilevered, piezoelectric beam 

structure is presented.  As the beam vibrates due to base 

excitation, the tip passes through the wells of attraction of 
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